全国免费电话:
Q1015831000

公司新闻

恒达平台地址_AI机器人落地步入深水区,疫情重

来自重量级投资人领投的 B 轮主力融资,不仅意味着 3D AI 细分赛道远景最先晴朗,也预示了行业会加速分化。

产物虽然可以辅助创业公司应对制造业行业需求的特殊性,然则,由于这一轮人工智能的弱 AI 性,若何破局从 10 到 100,仍然是摆在这些公司眼前最大的难题,现在已经泛起至少两种截然差别的破局之法。

只管短期内,疫情黑天鹅仍然会对机械人行业造出比较大的打击。然则,中长期来看,行业仍处在增进阶段。

撰文 | 微胖

去年的「金三银四」,梅卡曼德 CEO 邵天兰早已奔赴一个又一个客户现场。一年去过的工厂不小于 100 个的他,正被困于公司与家之间的两点一线。

不能出北京,回北京还要隔离,但总不能一直这么封着吧?邵天兰虽不习惯,也无可奈何。

春季前夕,梅卡曼德敲定红杉资源中国基金(以下简称红杉中国)领投的B轮主力融资,距离去年炎天获得英特尔资源投资仅 7 个月。去年 4 月,他们还完成了来自启明创投领投的A+轮融资。几回主要融资间隔时间都不长,营业生长异常快,现在,这支 160 人的创业团队已经服务了 100 多家客户。

被黑天鹅搅得天翻地覆的新年伊始,海内制造业复工率仅在三四成,外洋疫情伸张已成定局。疫情这个事情,实在挺伤的,邵天兰坦言,之前预计今年外洋营业占比提升至百分之二三十,现在又得重新评估。

不外,事物的生长从来都是非线性,总会从颠簸中获得收益或受损。信心,正成为机械人 3D 视觉细分领域的要害词。

几年前,每个投资人都在寻找独角兽,它是否会泛起在工业领域?规模化落地是一个很主要的节点,B 轮融资意味着在中国,这个细分赛道远景晴朗起来。来自顶级风投的投资也昭示一份对未来的信心。

「细分赛道走到什么阶段,要看跑出来的选手,(参考)平均值没有意义。」邵天兰说。

一 已往三年,做对了什么?

回首 2016 年,带着基于深度学习视觉方案进入机械人领域的创业公司络绎不绝,很少有人预测到一度热火朝天的赛道里,谁会率先跑出来。

刚出来,人人愿景都差不多,许多投资人看着团队顶着业内顶级科技公司或者科研机构的光环就欣然脱手。几年后,就像自动驾驶,谁家的车已经上路,跑了若干里程,一目了然。

2019 年的工业机械人领域继续延续了前一年的不咸不淡,不仅融资事宜低于以往,融资结构上也以 A 轮(以及之前)为主。大多数公司仍然挣扎着若何将手艺转化为产物,没有真正契合客户需求的产物,也难以快速复制。

庆幸的是,我们第一天决议的几个事情,到现在都没变过。邵天兰回忆道。

首先是做 3D AI 手艺。越传统的器械越不好做,做硬件去替换一个已经很成熟的产物,会是一个漫长的历程,偏软的(器械)会好一些。事实上,这也意味着一条类似安卓的生态之路,追求不了高溢价,但要实现规模化。

不外,制造业场景多,但每个都不够大,高度碎片化,而且,客户需求可谓极端多样性。好比,两家汽车公司都需要缺陷检测,仅仅由于流水线上摄像头摆放位置的差别,就可能需要重新努力别辟门户做一套训练数据集。

这和安防做人脸识别差别,无论你给哪个行业做人脸识别,做的事情都差不多。邵天兰解释道,服务制造业最大挑战不是知足需求,而是若何高效地知足成千上万用户的种种需求。

也没有什么花儿活,将手艺和履历沉淀到产物里,邵天兰说。从一最先,我们就坚持做产物,而不是纯项目。

已往三年,梅卡曼德通过服务行业大客户带出了自己的 MVP 产物(最小可行版本),这就像先造滑板车,将客户从 A 地运到 B 地,然后再迭代升级成更高级的交通工具。产物要素包罗环环相扣的核心手艺能力,好比视觉感知,路径计划,另有值得一提的完全图形化机械人编程软件 Mech-Viz。

想感动传统客户用自己的产物,单纯输入核心手艺并不现实,还需要体贴核心手艺以外更多的器械。好比,Mech-Viz 兼容了十几种品牌的机械臂编程语言,可让最终使用者在不写代码的情况下,通过拖拽模块快速设定和更改义务,完成编程,大大降低了使用难度和学习成本的同时,也降低了客户对新手艺的文化抵触。

仔细观察,这也是制造业赛道中一些亮眼创业公司的共同点。智布互联巧妙行使拉拢买卖之名(B2B,制衣厂订单)暗渡工业互联网之实(SaaS);为了感动装备服务商购置 PHM 软件,蘑菇物联还为他们设计了 CRM 软件,并以标准化 SaaS 软件的模式提供出来。

降低客户的文化抵触的同时,Mech-Viz 也降低了公司的项目部署成本。项目做了一个又一个,参与人的履历没有沉淀到一个平台上,怎么复制?邵天兰说。

或许这也是梅卡曼德感动红杉中国的一个主要原因,后者投资工业科技的逻辑之一是,不追全球领先手艺,而是追产物解决问题的效率和水平。

二 破局从 10 到 100,赋能照样聚焦?

产物只是一方面,邵天兰强调,为了实现「以一挡十」的服务效率,还要「做服务者,这与做产物相辅相成。」尽可能与集成商、本体厂商互助,才气高效知足极端多样性的客户需求。

已往一年落地规模获得显著提升,外洋拓展七个国家营业,很大水平上得益于服务好集成商。接下来,从 10 到 1000,邵天兰加倍强调了服务者角色。

不外,大致统计一下海内外 3D AI 赛道的初创公司,就会发现领先者们多数停留在了从 10 到 100 的阶段,包罗 Vicarious、Mujin、Preffered Networks 这样的明星。由于人人都面临一个相同的难题――弱AI。

它不是传统意义上的软件产物,AI 公司也若干带有服务公司性质。在已往的采访中,一些机械人创业公司都谈到过这样的问题。除了云端资源、数据和训练模子支出在公司破费中占比不小,导致毛利率降低,更为显著的是,扩展系统也比传统软件近乎零的边际成本要凌驾不少,特别是针对实践中的种种 corner case,落地多并不即是找到了有用规模化的设施。

正是在破解规模化瓶颈问题上,我们看到了创业公司各自取舍,走向差别门路。

邵天兰反复强调赋能,梅卡曼德是服务者,将手艺能力完全开放给机械人本体厂商、集成商。没必要亲手做所有的事情,只要这个细分领域手艺够得着、用户付得起、而且缔造的价值大于支付的价钱,就会与行业里的同伴互助,这也是梅卡曼德「下沉」原则。

与梅卡曼德同处规模化阶段的其他机械人公司,则坚持聚焦打法。与其赋能行业,不如先做透现在落地状态最好的细分领域。他们深耕的领域也与梅卡曼德差别,指向了自动化水平并不高的传统劳动密集型行业。

在公司负责人看来,平台价值在于坚守在集成商、装备商与终端客户之间的这一层面。他们也更愿意借助渠道的气力,直接买通装备制造商和装备用户。

两种差异化打法最终沉淀到了各自公司架构上。强调赋能的梅卡曼德,借鉴阿里的公司结构,前台直接服务集成商和客户,中台提供支持,后台做手艺研发。

我们是一个典型的中台公司,邵天兰解释道,需要借助中台高效应对大量客户极端多样性需求。这也是为什么他将公司比作「水桶型」。

强调聚焦的创业公司一旦决议铺设渠道,就会马上剥离大部分营业,聚焦一两个最有「钱景」的点,营业重心也因此浓缩为「一个平台(操作系统),两个领域」。公司架构也由原来的中台架构回归到事业部制,这又与传统机械人公司结构(也是事业部制,好比物流事业部、汽车事业部)类似起来。

事实上,若何处置与中国特色的集成商和工业装备服务商的关系,几乎是新科技破局规模化落地回避不了的问题。对问题的差别回覆,也直接决议了这些公司后续的演进方式。

好比,在工业互联网领域,有的创业公司倾向于绕过普遍存在的工业装备服务商,直接买通装备制造商和装备用户。有的公司以为,很难绕过这一环。和美国工业高度集中,装备商往往直接销售装备给用户差别,在中国,许多客户资源都掌握在装备服务商手中。

不外,无论以何种方式大规模化落地,细分赛道的马太效应已经凸显,也将越来越显著。杀出重围进入头部阵营的玩家,之后再举行下一阶段,输的一方或落伍的一些玩家,会被大量镌汰。

三 打击细分的隐形冠军

现在,邵天兰已经很难亲自过问所有的事情。从 10 到 100 的规模化落地,严酷磨练着团队治理能力,对于邵天兰这样工程师身世的产物司理来说,重手艺的惯性头脑正成为需要被「调试」的工具。

公司服务者角色越来越强,集成商客户也越来越多,虽然产物好不好用仍然很主要,然则现阶段对外支持能否跟得上,更具现实紧迫性。梅卡曼德正在确立的知识、培训服务系统已经花去团队大量款项和精神。

一个加倍全栈的首创人会体贴产物/服务的各个方面,这就需要善于许多软件以外的器械,好比硬件,供应链治理,销售,互助同伴关系等。前英特尔营销高管比尔・戴维多(Bill Davidow)将这种「整体产物(whole product)」观点视为辅助初创企业跨越要害鸿沟的主要方式。

对于手艺靠山首创团队来说,这些并不是他们曾经熟悉的事情,也意味着更高的难度系数,启明创投周志峰在接受 36kr 采访时曾谈到,未来 To B 科技创新领域会有更多的并购机遇。

不外,若是他们做到了,竞争对手将很难复制这样的「整体产物」,它有助于建立一些异常大的公司。梅卡曼德想要为细分领域的隐形冠军。

面临竞争中挥之不去的传统行业巨头,邵天兰谈到了他的「工业逻辑」。若是产物做到足够好、开放而且更廉价,重复建设就没有必要。「(我们)不是不让别人做,而是(让他们)没必要都自己做。」

这有点像罗纳德・科斯的社会分工,若是市场买卖成本足够低,为什么还要将人留在工资单上?只有当内部解决这件事的成本低于(包罗即是)在市场找外助时,有能力的企业才会思量自己做。

相比安防领域,制造业更难具备这样的条件。在邵天兰看来,安防行业并不高度涣散,巨头集中,产物产业链条也比较浅,龙头可以「软硬兼施」。制造业不仅系统重大也很涣散,除了高度集中、手艺门槛异常高的个体领域(好比航空发动机),很难形成巨头通吃的局势。

在不少机械人创业公司看来,他们并不是原有的赛道上去追赶大公司,而是「重新努力别辟门户」。在底层架构上运用新手艺重新设计,包罗把深度学习连系机械视觉,引入到自动化行业这个新赛道上,这些初创有可能更领先。更何况,对中国市场痛点的明白和响应速度上,大公司也不一定优于这些初创。

虽然很难形成巨头通吃的局势,不外,许多细分领域的头部企业可以做到一家独大,整个行业会有几千个这样的隐形冠军,就像德日那样,邵天兰坚信。

四 2020,机遇仍然在这里

现在制造业产能恢复仍不理想,导致市场需求降低,上半年市场增进可能会有一个回调,邵天兰以为,短期内,疫情黑天鹅仍然会对机械人行业造出比较大的打击。中长期来看,行业仍处在增进阶段,疫情不仅加深了传统行业的自动化认知,也多了一份升级驱动力。

红杉中国二月「逆行」完成 25 家企业的投资,投资数目实现了同比增进,也从一个侧面反映出资源对工业科技赛道的信心。新的被投企业当中,除了梅卡曼德,另有芯片以及半导体智能制造的初创,他们手中都握有赋能制造企业升级的新手艺。

红杉中国以为,疫情终会已往,未来各个行业将会泛起更强劲的反弹力,受挫行业会逐步恢复,新生行业将快速生长。

无论若何,我以为这个创业路径照样可以坚持下去。黑天鹅肆虐历程中,另一家机械人创业公司负责人表达了类似信心。

回忆当初「押注」制造行业,邵天兰笑着说,若是用命去押注,我也不敢赌。「(押中)不是说我们有多牛,也有运气成分在」。

没有完全盯着电商,他们一最先就以为,制造业会是一个重大的增量市场。全球 60% 的工业机械人都在中国汽车和 3C 制造领域,新手艺可以让这些机械人变得更伶俐和天真,应对加倍庞大的生产场景。

从流传纪律来看,新手艺一样平常都市从 IT 基础好、刚需显著而且支付能力强的行业最先,好比消费互联网、安防和金融,然后再向其他行业溢出。从红杉中国最近三四年的投资偏向看,越来越多的智能装备、工业互联网及要害器件初创泛起在项目名单上,本质上都是面向制造升级发生的增量市场。

关注这个溢出偏向的另有启明创投。周志峰以为,偏向详细行业应用的偏向上加倍关注 B 轮投资机遇,即那些将较成熟的视觉、语音手艺找到明确行业场景、其商业价值已经获得开端验证的企业。好比,梅卡曼德。

工业科技的投资与政策导向密切相关,一位投资人告诉机械之心,「新基建」大力生长 5G、工业智能也给这个细分赛道添加了助燃剂。

而对于传统制造业来说,已经开启的自动化历程也难以因疫情而中止。

年前采访过的一家位于东莞的玩具制造商已经买了几十台机械臂用于升级,去年中美贸易战如火如荼,他曾思量将工厂搬到东南亚。

然则,玩具包罗不少配件,好比芯片、铁片等,东南亚没有这样完整产业链条,也不具备中国熟练工人的隐知识,最终他选择留在东莞,通过自动化升级应对劳动力问题。

疫情犹如一次大考,什么样的企业复工更快、受职员影响更小、交付能力更强,「信赖每个人心里都有了一笔更清晰的账。」这位负责人说。

Copyright © 2014-2019 恒达总代理招商-恒达登录平台 版权所有   

地址: 电话:Q1015831000 传真:

手机:Q1015831000 联系人:恒达平台招商主管